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THE PSEUDOINVERSE OF A RECTANGULAR MATRIX AND ITS STATISTICAL APPLICATIONS 

By: T. N. E. Greville, Office of the Quartermaster General 

SUMMARY 

The connection between inversion of matri- 
ces and solution of nonsingular systems of lin- 
ear equations is well known. The statistician, 
however, is often concerned with systems of 
equations in which the number of equations ex- 
ceeds the number of unknowns and there is no 
exact solution. In such cases the least squares 
solution of the system is usually sought, and 
the classical matrix theory is of little avail. 

In 1920 E. H. Moore announced a generaliza- 
tion of the notion of inverse of a matrix, which 
provides a generalized inverse or "pseudoin- 
verse" for rectangular matrices, well as for 
singular square matrices. Bjerhammar in 1951 
and Penrose in 1956 have shown that this pseudo - 
inverse is related to the leant squares solution 
of an inconsistent system of linear equations in 
a way analogous to the relationship of the clas- 
sical inverse to the solution of a nonsingular 
system. 

In the present article two possible appli- 
cations of this concept to statistical proce- 
dures are suggested. These relate to (1) the 
computation of multilinear regression coeffi- 
cients and (2) least squares curve fitting, with 
particular reference to the fitting of polyno- 
mials. In the latter application the procedure 
suggested here has an advantage over the use of 
orthogonal polynomials in that unequal spacing 
of the arguments does not increase the amount of 
calculation required. Among other possible uses 
of the pseudoinverse not discussed here is its 
application to bivariate interpolation.* 

A recursive algorithm is described by which 
one can derive from the pseudoinverse of a given 
matrix that of a second matrix obtained by the 
addition of a single column. Thus one computes 
first the pseudoinverse of the first column of 
the coefficient matrix, then that of the first 
two columns, and so until the pseudoinverse 
of the entire coefficient matrix is obtained. 
In the regression application, this makes it 
possible to arrange the variables in decreasing 

order of their probable importance in the re- 
gression equation, and to stop the process when 
it appears that the introduction of further var- 
iables will not have a significant effect. Sim- 
ilarly, in fitting a polynomial, the process is 
arranged so as to fit polynomials of successive- 
ly higher degree, and one can stop when it ap- 
pears that the most suitable degree has been 
reached. In either case the residual variance 
is easily obtained as a by- product. 

1. 

It is of course well known that any square 
matrix A with nonzero determinant has a unique 

inverse f1 such that 

(1) 1= 1 A = I , 

where I denotes the unit matrix or identity ma- 
trix having l's along its principal diagonal and 
0's elsewhere. It seems to be not so well known 
that in 1920 the eminent American mathe- 
matician E. H. Moore announced a generalization 
of the inverse concept to include rectangular 
matrices and those with vanishing determinant. 
Little notice was taken of Moore's discovery for 
about 30 years, but during the past decade the 
properties of this generalized inverse or pseudo- 
inverse have been vigorously explored by 

Penrose [6,7J and 
Hestenes J It is found to have some use- 
ful applications in numerical analysis and sta- 
tistics. Of the latter, probably the most obvi- 

are in connection with multiple regression 
and least squares curve fitting. 

It is the purpose of the present expository 

article to indicate these statistical applica- 

tions and to describe a simple numerical algo- 
rithm for computing the pseudoinverse of a given 

matrix. No claim to originality is made; every - 
thing in this article is explicit or implicit in 

the work of Bjerhammar, Penrose and Hestenes. 

A knowledge of the elementary properties of 
matrices is assumed./ In particular, the read- 

er should keep in mind that a vector can be 
thought of as a matrix of one column (or row), 

and that the row-by-column rule for multiplying 
two matrices together implies that, in a matrix 

product 
AB=C, 

each column of C is a linear combination of col- 
umns of A and each row of C is a linear combina- 
tion of rows of B. Extensive use will be made 

of the notions of vector spaces and orthogonali- 

ty. A fuller version of this article, including 
a brief exposition of these concepts and proofs 

of certain important properties of the pseudoin- 

verse, can be obtained the author in mimeo- 

graphed form. 

2. SOLUTION OF SYSTFMS OF LINEAR 

It is well known that a system of linear 
equations 

n 

(2) 
j =1 

aij =bi 

(i = 1, 2, m) 

can be written compactly as a matrix equation 

(2)' Ax b 

where A denotes the matrix (aid, x is the vec- 

tor (i.e., single- column matrix) whose elements 

are the values of the variables x which consti- 



tute a solution of the system, and b is the vec- 
tor whose ith element is bi. If A is nonsingu- 

lar (i.e., if m = n and its columns are linearly 

independent), it has a unique inverse satis- 
fying equation (i), and moreover the system (2) 
or (2)' has a unique solution given by 

(3) x 

The statistician is often concerned with 
systems of equations in which m > n and there is 
no exact solution. In such a case, Bjerhammar 

and Penrose have shown that the 
best solution in the sense of least squares is 
given by 

where At is the pseudoinverse of the rectangular 
matrix A. The definition and computation of the 
pseudoinverse will now be taken up. 

3. DEFINITION AND PROPERTIES 
OF THE PSEUDOINVERSE 

Any nonzero real matrix A of rank r can be 
expressed as a product 

(4) A BC 

where the r- column matrix B and the r -rowed ma- 
trix C are both of rank r. To show this, let B 
be any matrix whose columns form a basis for the 
column -space of A. Then a matrix C exists such 
that A = BC, and C is of rank r, since the rank 
of a product cannot exceed the rank of any fac- 
tor. Since the columns of B and the rows of C 

are linearly independent, the matrices BT B and 

CCT (where the superscript T denotes the trans- 
pose) are positive definite, and therefore non- 
singular. 

We now define the pseudoinverse for the ma- 
trices B and C (and generally for rectangular 
matrices of maximal rank) as follows: 

(5) Bt (BT B)-1 BT = CT(CCT) -1 

It will be noted that, for a nonsingular square 
matrix, these expressions reduce to the Classi- 
cal inverse. We have also 

(6) BtB= CCt =I, 

and moreover Bt A = C, which, together with (4), 
shows that the row- spaces of A and C are identi- 
cal. It follows that the rows of C form a basis 
for the row -space of A. 

For the nonzero real matrix A, we now define 
the pseudoinverse as 

(7) At = Ct Bt 

Finally, for completeness, we define the pseudo - 
inverse of an m n zero matrix as an n x m 
zero matrix. 
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In consequence of this definition, the row - 

space and column -space of At the transposes 
of the column -space and row- space, respectively, 

of A. If A is m x n, evidently At is n x m; 

thus both the products and At A can be 
formed. Moreover, these products have interest- 
ing properties. First, we note that each is sym- 
metric and idempotent (i.e., equal to its own 

square). It is easily verified that I - and 

I - At A are also symmetric and idempotent. We 

can show that the product AAt is the same for any 
two matrices Ai and A2 having the same column - 

space. For, equations (4), (6) and (7) give 

= BBt. Since the same matrix B can serve for 
both Ai and A2, the result follows. 

Let u denote any vector in Euclidean m -space 
and consider the vectors: 

x = u, y= u-x= (I-AAt)u. 
It is evident that x is a vector in the space Sc, 

the column -space of A. Moreover, y is orthogonal 
to this space. For, if z is any vector of Sc, 

there exists a vector w, such that z = Aw; aid, 
in view of the symmetry and idempotency of 

yT z = uT(I AAt)Aw = 0 , 

since (4), (6) and (7) give AAt A = A. This de- 
composition of u into a vector of Sc and a vector 

orthogonal to is unique. To show this, let u 

= xi + where xi is in Sc and orthogonal to 

Then there exists a vector such that 

= Awl, and u = AAt Awl = Awl = xi, showing 

that = x. 

We shall call the vector x the projection of 

u on and the matrix AAt, which has been shown 

to be characteristic of the space (since it is 
the same for all matrices A having this column - 
space), will be called the projector on Sc, and 
will be denoted by Pc. 

Similar remarks apply to the matrix At A 
with regard to left multiplication by row- vectors, 
and it will be called the projector on the row - 
space Sr of Al and will be denoted by Pr. 

4. APPROXIMATE SOLUTION OF INCONSISTENT 
SYSTEMS OF LINEAR 

Consider the problem of approximating an ar- 
bitrary vector u by a vector v which is restrict- 
ed to the extent that it must belong to a given 
vector space/ S. We shall take the differences 
between corresponding components of u and v, and 
shall say that the approximation is "best" when 
the of the squares of these differences is 
a minimum. This of squares, which we shall 
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denote by q, is given by 

(8) q = (u v)T (u v) 

Now, we have 

u = Pu + y , 

where P is the projector on S and y is orthogonal 
to S. Therefore, 

u-v= (Pu -v)+y. 

Since Pu - v belongs to S, it is orthogonal to 
y, and therefore equation (8) reduces to 

q = (Pu -v)T (Pu 

This is the of two positive terms, the second 
of which is independent of v, and is clearly a 
minimum when the first term is made to vanish by 
choosing v = Pu. In other words, the projection 
of u on S is the best approximation in S to u. 

Now, let us return to the consideration of 
the system of equations represented by (2) or 
(2)'. An exact solution is possible if and only 
if b belongs to the column -space of A. When this 
is the case, the solution is unique when A is 
nonsingular, and is given by (3). if A is singu- 
lar, the general solution is 

x = At b + y , (9) 

where y is any vector orthogonal to the row -space 
of A. It is clear that this is a solution, since 

Ax +Ay =b, 

since, under the hypotheses, Pc b = b and Ay = O. 

To show that this includes all solutions, we 
first note that any solution x can certainly be 
expressed in the form (9) if y is unrestricted. 
Substitution of this expression in (2)' then 
gives b + Ay = b, or Ay = O, showing that y is 
indeed orthogonal to the row -space of A. 

Since the two vectors in the right member of 
(9) are orthogonal, the length of the vector x is 
a minimum when we take y = O. Thus, the solu- 
tion of vector length is given by 

(10) =Atb . 

Of greater interest to us, however, is the 
case in which b is not in the column -space of A, 
so that no exact solution is possible. In this 
case, we consider as the "best" solution the vec- 
tor x for which the length of the vector Ax - b 
is a minimum. This is tantamount to the usual 
least squares, criterion, and implies, as ve have 
already seen, that 

Ax=Pcb, 

where Pc is the projector on the column -space 

of A. Since Pc b is in S, the solution is given 

by (9) with b replaced by Pc b, and is therefore 

x =At Pcb +y =Atb +y, 

since At = At by (4), (6) and (7). Thus we 
have shown that when there is no solution, (9) 
and (10) give the "best" solution in the sense 
indicated. 

5. STATISTICAL APPLICATIONS 

Perhaps the most obvious statistical appli- 
cation is to multiple regression. Let a variate 

y depend n variates x(1), x(2), and 
let it be required to determine the coefficients 

in the regression equation 
n 

y 
j -1 

It is assumed that corresponding numerical values 

yi, x (i) are given for i = 1, 2, ..., m. If y 

denotes the column -vector whose ith component is 
yi, a the column- vector whose component is 

and X the matrix (xij)), the regression coef- 

ficients are given by 

a = y . (u) 
If the columns of X are linearly indepen- 

dent, as will usually be the case, the least 
squares regression equation is unique. Other- 
wise, there will be many solutions which yield 
the minimum value for the sum of the squared re- 
siduals. Of these possible solutions, (11) then 
gives the one for which the sum of the squares of 
the coefficients aj is smallest. 

Let (xi,yi), = 1, 2, ..., m, be a set of 

points to which a curve y = f(x) is to be fit- 
ted. It is stipulated that f(x) is to be a line- 
ar combination of n given functions gl(x), g2(x), 

gn(x): thus 

f(x) = ai gj(x) 

The coefficients aj are to be determined so as to 

minimize the quantity 

S = - f(xi)J2 . 

i =1 

This covers many, but not all least squares curve 
fitting situations. The simplest and most usual 
case is that of fitting a polynomial of degree 

n - 1, for which gj(x) = -l. 

If y and a are defined as before and Q de- 
notes a matrix such that the element in the ith 
row and the 1th column is gj(xi), then 

a =Qty. 

If u denotes the fitted ordinate corresponding 

the given ordinate and u is the vector whose 

ith component is ui, we have 

u =QQty =Pc y, 



where is the projector the column -space of 

6. RECURSIVE ALGORITHM FOR OBTAINING 
THE PSEUDOINVERSE OF A MATRIX 

Equations (5) and (7) are not very practi- 
cal for computational oses. The writer has 
given elsewhere following algorithm§/ 
for obtaining the pseudoinverse of a matrix. Let 

denote the column of a given matrix Al and 

let denote the submatrix consisting of the 

first k columns. Then the pseudoinverse of Ak is 
of the form 

(12) 

where 

(13) 

- 7k 

7k 

and the last row remains to be determined. In 

its determination two distinct cases arise, ac- 

cording to whether or not belongs to the col- 

umn -space Sk_1 of In other words, it must 

be ascertained whether or not the space spanned 
by the first k - 1 columns of A is enlarged by 
the addition of the kth column. Now belongs 

to Sk_1 if and only if the projection of on 

is equal to itself: in other words, if 

(14) 

If (14) is not 

(15) 

7k = 

satisfied 

yk)t 

while if (14) is satisfied 

(16) 

Formulas (12) to (16) constitute a recursive pro- 

cedure fOr obtaining successively Al, Al, ..., 

starting with Al. Both for the initial determi- 

nation of and for the evaluation of the right 

m of (15) a formula is required for the 
pseudoinverse of a single -column matrix a. 
follows (5) that this is 

(17) t 
a 

a)-1 á 

It 

(a = 0) 

(a 0). 

For the purpose of statistical applica- 
tions, some "streamlining" of the algorithm can 
be effected by noting that in these situations it 
is unnecessary to obtain the pseudoinverse ex- 
plicitly. Rather, what is wanted is the "best" 

solution x = At b of an inconsistent system 
- b. The algorithm can be modified to give 

b for k = 1, 2, successively. To this 
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end it is convenient to define matrix A' ob- 
tained by enlarging A through the addition of two 
columns on the right: (i) the vector b and (ii) 
a total column, which is the sum of all the pre- 
ceding column vectors. Then (12) gives 

(18) Ait A' 
-1 

A' - 

A') 

The penultimate column of this matrix is b, 

while the final column should be the sum of the 
preceding column vectors if the arithmetic has 
been correctly performed. Moreover, (13) shows 

that 7k is the kth column of AL A'. 
In order to obtain A' for use in (18) we 

must first compute 

(19) Ak-1 
7k 

If this vector vanishes, (16) shows that 

A' (1 + 7k) -1 A' 

If (19) does not vanish, it equals by (15). 
By (17) we then have 

(20) A' 
-1 

A' 

If we first compute the vector A', we note 

that its kth element is (13), 

= 
is the projection of the 

column -space of Therefore, as given by 

(19) is orthogonal to this space. Thus 

7k = and consequently, 

= follows from (20) that is ob- 

tained from the computed vector A' upon "nor- 

malizing' it by dividing by its kth element. 
With these explanations, (18), (19) and (20) con- 
stitute the recursive procedure desired.// 

7k 

For example, if m sets of corresponding val- 
ues of n statistical variables 

x2, , 
are given, and it is required to compute 
sion coefficients of x1 against x2, 

x3, .., 
the matrix A' is formed so that its first column 
consists of all l's, and the 2nd to nth columns 
exhibit the successive values of the variables 
x2, ..., xn, respectively. The (n + 1)th column 

is the vector x whose components are the corre- 
sponding values of and this is followed by 

the total column. Then At x is the mean value 

of x1, while at the kth stage of the process 

x is a vector whose components are the coef- 

ficients in the regression equation 

xi = bk + bi2.3...k x2 + b13 24...k x3 

... 
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The components of Ak x are the values 

of xi predicted by the regression equation, while 

xT(x x) is the sum of the squares of the 

errors of estimate. Thus, if there is doubt 
to how many of the variables should be included 
in the regression equation (and if one is fortu- 
nate in choosing the order in which the variables 
are introduced), this method shows at a glance 
how the coefficients change as the less sig- 
nificant variables are brought into the equation, 
and, if desired, the reduction at each step in 
the standard error of estimate. It will be noted 
also that the vector given by (13) exhibits 

the coefficients in the regression equation of 
against x2, x3, ..., xk_lJ 

Consider now the problem of least squares 
fitting of a polynomial. Let (x1,11), i = 1, 2, 

..., m, be the set of points to which a polynomi- 
al is to be fitted, let Abe the n- column matrix 

(xi -1), and let y denote the vector whose ith 

component is yi. Then, if the algorithm is ap- 

plied, the vector y exhibits the coeffi- 

cients of successive powers of x in the least 
squares polynomial of degree k - 1, while 

Ak exhibits the values of the fitted poly- 

nomial corresponding to the given abscissas 

and Ak y) is the sum of the squared 

residuals. The latter quantity, of course, may 
be used in testing to see what degree of polyno- 
mial is most suitable./ 

Extensive tables are available [16] to fa- 
cilitate the use of orthogonal polynomials in 
fitting a least squares polynomial to data with 
equally spaced arguments, but they are of no 
avail when the abscissas are irregularly spaced. 
It is to be noted that the procedure described 
here makes no assumption about the spacing of the 
arguments. Further, the recursive nature of the 

process obviates the need to make use of orthog- 

polynomials directly. If desired, however, 

they can easily be obtained as a by- product.10 

If 7(i) denotes the ith component of 7k, the set 

of polynomials 

(21) 

Po(x) = 

= 

(k=1, 2, - 1) 

constitutes an orthogonal set over the discrete 
domain (x1, x2, ..., m). other words, 

(22) pj(xi) = 0 (j k). 

To show this, we first note that j and k are 
interchangeable in (22), so that we can assume 
without loss of generality that j < k. Thus, 

(22) will be established if we can show that 

pk(xi) = 
i=1 

(j = 0, 1, k - 1). 

But, in view of (21) and of the definition of A, 
this follows from the fact previously noted that 
the vector - 

Ak_i 7k 
is orthogonal to 

FOOTNOTES 

This possibility was suggested to the 
writer by William Hodgkinson, Jr., of the Ameri- 
can Telephone and Telegraph Co. 

1/The first two writers mentioned were una- 
ware of Moore's work until it was brought to 
their attention by Rado L 93. 

excellent orief treatment of the sub- 
ject, more than adequate for the understanding of 
this article, is given in Chapter 1 of [102. 

pseudoinverse can be defined in sever- 
other ways [2,6,8,12, and the fuller, mimeo- 

graphed version of this paper]. The present 

approach, which is probably the simplest, was 
suggested to the writer by A. S. Householder, 
whose assistance is gratefully acknowledged. 

1.4/See also [3,4,7,11_7. 

1/See also 

2/In essence, this algorithm is an abbrevi- 
ated form of a particular case of the method of 
matrix inversion by biorthogonalization proposed 
by Hestenes [8). See also [13,14.]. 

further "streamlining" is possible by 

working with the symmetric matrix A', which, 
in essence, merely exhibits the usual "normal" 
equations. This kind of procedure is easily 
explained without reference to the pseudoinverse, 
and is probably the simplest approach for small - 
sized calculations. In large -scale calculations, 
it has the disadvantage that, if the "recursive" 
feature is retained, certain key quantities in 
the computations (e.g., those which we have called 
"normalizing" factors) are obtained as differences 
between large, and almost equal, numbers, and 
accuracy is rapidly lost. 

numerical example of the application to 
multiple regression is given in the fuller, mimeo- 
graphed version of this article. It is not repro- 
duced here because the actual arithmetic is essen- 
tially the same as that involved in other methods 
of calculating multiple regression coefficients. 

2/See [152, pp. 461 -465. 

10 See also [173. 
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